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Abstract
In the CNS, minor changes in the concentration of neurotransmitters such as
glutamate or dopamine can lead to neurodegenerative diseases. We present
an evolutionary perspective on the function of neurotransmitter toxicity in the
CNS. We hypothesize that neurotransmitters are selected because of their
toxicity, which serves as a test of neuron quality and facilitates the selection of
neuronal pathways. This perspective may offer additional explanations for the
reduction of neurotransmitter concentration in the CNS with age, and suggest
an additional role for the blood-brain barrier. It may also suggest a connection
between the specific toxicity of the neurotransmitters released in a specific
region of the CNS, and elucidate their role as chemicals that are optimal for
testing the quality of cells in that region.
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Introduction
Some non-peptide chemicals that function as neurotransmitters in 
the central nervous system (CNS), such as dopamine and serotonin, 
have toxic effects1–4. Neurodegeneration can result from the deregu-
lation of the concentration of these neurotransmitters5–7. It is known 
that neurotransmitters such as serotonin, acetylcholine (ACh), 
glutamate and gamma-aminobutyric acid (GABA) function as 
signals between non neuronal cells in the periphery8–12, and have 
evolutionarily conserved roles, serving also as signals in plants13,14 
and unicellular organisms15. This does not necessarily explain their 
adaptive role as signals in the CNS, as at synapses a variety of less 
toxic chemicals could have served the same role, had they been 
loaded into vesicles in the pre-synaptic neuron and had comple-
mentary receptors on the post-synaptic neuron. In the following 
we attempt to highlight the potential insights that may arise from 
applying the theory of signal selection16 to the evolution of sig-
nals between cells in multicellular organisms. The theory of signal 
selection, based on the handicap principle, suggests that the proper-
ties of the signal serve as a test of the information encoded in the 
signal. The theory revolutionized the study of signaling between 
organisms17,18. The application of the theory to the evolution of neu-
rotransmitters suggests that neurotransmitters are selected in part 
because of their toxicity, which serves as a test of the quality of 
the releasing cell and its connectivity with neighboring cells, and 
facilitates the selection of neuronal pathways.

The theory of signal selection
The theory of signal selection was developed by Zahavi19,20 to 
explain why peahens are stimulated by a trait that imposes a handi-
cap on the male, rather than paying attention to more positive traits 
in the males that court them. Zahavi suggested that peahens are 
attracted by peacocks that carry the burden of a long and heavy 
tail because this burden constitutes a handicap that tests the quality 
of the displaying peacock. This interpretation pointed at the objec-
tive information provided by the signal, which results in the peahen 
responding to one peacock and rejecting others; it is not coinciden-
tal that peahens are attracted to males with heavy tails, rather, it is 
the tested and reliable information provided by the cumbersome tail 
that selected for the interest of the female in the level of the handi-
cap imposed on the male by its tail.

We suggest that, similarly to the burden imposed by the peacock’s 
tail, a signal’s toxicity is necessary to impose a specific chemical 
burden on the signaling cell to ensure that the signal inherently 
provides reliable information on some properties of the signaling 
cell. It is reasonable to assume that if signals within multicellular 
organisms were consensus signals that did not inherently correlate 
to a specific metabolic activity of the signaling cell, a larger variety 

of chemicals could have been selected as signals within multicel-
lular organisms. In addition, phenotypes which had not developed 
to signal could signal in error, while the level of the signal could 
misrepresent the metabolic state of the signaler. We suggest that 
the investment in reliable signaling in multicellular organisms is 
necessary in order to reduce the potential harm of such errors16. 
Tests must be difficult in order to provide meaningful and reliable 
results16, and hence we expect that, if neurotransmitters also test the 
quality of the releasing cell, they should be directly toxic in a way 
that tests the message encoded in the signal.

Neurotransmitter toxicity and its implication in 
neurodegeneration
In the CNS, neurotransmitters play a central role in relaying infor-
mation at chemical synapses. This role involves their vesicular 
secretion by the pre-synaptic cell and interaction with receptors on 
the post-synaptic cell. However, neurotransmitters are also released 
outside synapses in high concentrations prior to blood-brain bar-
rier development21,22 and as part of non-synaptic forms of intercel-
lular communication in the mature brain23. Synaptic transmission 
requires the rapid clearance of the secreted or released neurotrans-
mitter via uptake by neurons and astrocytes24. When these mecha-
nisms are deregulated, the accumulation of neurotransmitter in 
the extracellular matrix can lead to neurodegeneration5–7. Here we 
review briefly the toxicity of some neurotransmitters and its role in 
neurodegeneration.

Glutamate
Glutamate exerts neurotoxicity via excitotoxicity caused by the 
overactivation of NMDA receptors25 and oxidative toxicity caused 
by the inhibition of cysteine uptake via uptake by the cysteine-
glutamate anti-porter26. As glutamate uptake is an energy-dependent 
process that involves the co-transport of sodium27, glutamate uptake 
is reversed in hypoxic conditions and leads to an increase in extra-
cellular glutamate28. The increase of extracellular glutamate has 
been implicated as a causative factor in numerous pathologies, 
including stroke29, Huntington’s disease, Parkinson’s disease and 
amyotrophic lateral sclerosis30.

Despite its abundance, glutamate is stored mostly in subcellular 
compartments31: in astrocytes its uptake is coupled with its conver-
sion to glutamine32 and in neurons the synthesis of glutamate from 
2-oxoglutarate33 or glutamine32 is correlated to its uptake into vesi-
cles, suggesting that it is also potentially toxic within the cytoplasm. 
In addition to glutamate toxicity that is mediated by its interaction 
with receptors and secondary to its uptake mechanisms, evidence 
of the interaction of glutamate with oxygen radicals could point to 
potential direct damage of glutamate to membranes. In the presence 
of hydroxyl radicals and molecular oxygen, glutamate is oxidized 
to 2-oxoglutarate in a reaction that releases hydrogen peroxide34,35. 
Glutamate in particular has a relatively high yield of peroxide in 
the presence of oxygen radicals, relative to glutamine, glycine and 
aspartate34. This process is also iron-dependent, the presence of 
which is a causative factor of neurodegeneration involving radical 
oxygen species36.

Dopamine
Dopamine is involved in the pathogenesis of Parkinson’s disease, 
which involves the degeneration of dopaminergic neurons in the 
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substantia nigra, leading to motor dysfunction5,6. The loss of 
dopaminergic neurons has been linked to dopamine’s cytotoxicity that 
results from the deregulation of its metabolism in these neurons6.

Dopamine is directly toxic in its oxidized semiquinone and qui-
none forms1,37. Dopamine toxicity is also related to the presence of 
metal ions such as iron4, which increase its oxidation to neurotoxic 
metabolites38, while metal ion chelators have a protective effect 
in Parkinson’s disease39. It has already been suggested that redox 
mechanisms that render intracellular dopamine toxic in the cytosol 
could also render extracellular dopamine toxic3.

Serotonin
Serotonin is sensitive to oxygen radicals, and its indole moiety is 
readily oxidized in the presence of hydroxyl radicals to form neuro-
toxic metabolites of serotonin1. The indole moiety of serotonin can 
undergo oxidation by indoleamine 2,3-dioxygenase to form kynure-
nine, which can be metabolized further into various neurotoxic 
chemicals40. This pathway of serotonin metabolism has been impli-
cated in neurodegeneration associated with depression41. Serotonin 
is toxic in the presence of copper42, causing intracellular damage 
such as DNA strand cleavage43. Serotonin is also toxic in the pres-
ence of iron2, causing mitochondrial damage44. This suggests a role 
for serotonin in copper and iron mediated neurodegeneration.

Serotonin can also interact with lipid membranes45, partially inter-
calating into the phospholipid layer and thus causing structural 
changes in the membrane. It has been shown that the interaction of 
neurotransmitters with the cell membrane can have a non-specific 
anesthetic effect on receptor activity46, and so chronic exposure to 
serotonin may alter membranal homeostasis.

Acetylcholine
As far as we are aware, there is currently no experimental evi-
dence of direct ACh toxicity. However, the overstimulation of ACh 
receptors as a result of ACh accumulation that is caused by acetyl-
cholinesterase inhibition can lead to cholinergic toxicity47,48. This 
toxicity may involve the release of choline from phosphatidylcho-
line that is downstream of muscarinic ACh receptors49, leading to 
phosphatidylcholine depletion. In addition, the use of nicotinic ACh 
receptor antagonists has shown to reduce the neurotoxicity of the 
Alzheimer’s disease-related peptide, β-amyloid50.

ACh interacts with lipid bilayers and elicits changes in the organi-
zation of the lipid bilayer51. This interaction is non-specific, slower 
than receptor activation, and has a longer duration46. We speculate 
that the accumulation of ACh could interfere with the membrane 
morphology46 and consequently may interfere with its function.

Testing neurotransmitter toxicity
Though the putative toxicity of neurotransmitters presented above 
suggests that our hypothesis can be generalized to most neuro-
transmitters, only a small number of neurotransmitters have been 
shown to have direct toxicity. In order to test the direct toxicity of 
a neurotransmitter, it is necessary to create a cell line that does not 
express adaptive defense mechanisms (such as specific receptors or 
degrading enzymes that bind the neurotransmitter), and expose it to 
varying concentrations of the neurotransmitter. If the concentration 
of the neurotransmitter in the medium has no effect on the viability 

of the cells, then it is reasonable to assume that the neurotrans-
mitter is not directly toxic. This type of experiment could test our 
hypothesis.

The function of neurotransmitters in the brain – some 
considerations resulting from our evolutionary 
perspective
The consideration of a function for neurotransmitters as a reliable 
representation of the specific activity of the releasing cell, rather 
than simply as chemicals that facilitate the transfer of information 
between neurons, may contribute novel deliberations and interpre-
tations of known phenomena.

The formation of connections between neurons in the vertebrate 
CNS during embryogenesis and development is a dynamic proc-
ess in which neurons that do not form synapses are eliminated52,53, 
while neurons forming new synapses survive into adulthood54,55. In 
addition, since neurons have an array of potential connections, a 
selection process is involved in the development and ongoing activ-
ity of neuronal networks52,55–57. Hence, we suggest that the toxic 
neurotransmitters that are released from neurons in the CNS func-
tion as tests of neuronal quality. The toxicity is important for the 
process of selection that is involved the selection of the optimal 
pathways for relaying information between and within specialized 
CNS centers.

A better reflection of quality is obtained when tested in more than one 
parameter. In the choice of mates, birds display their quality through 
several signals such as dancing, colors and vocalizations16. This may 
be also the reason why more than one neurotransmitter participates in 
the selection of neuronal connections. Indeed, most synapses depend 
on more than one neurotransmitter in order to function58.

Several observations support the notion of the importance of neuro-
transmitters in the selection of synapses: glutamate signaling in the 
auditory system is essential for the normal development of inhibi-
tory circuits, in which some synapses are strengthened and others 
are silenced57. Glutamate is also important in the maturation of 
neuronal pathways in the mushroom bodies of Drosophila through 
non-synaptic mechanisms59. GABA is similarly involved in the devel-
opment of neuronal circuits through non-synaptic mechanisms60.

Brain centers and their specific composition of 
neurotransmitters
If, as we suggest, released neurotransmitters represent the phenotypic 
qualities of the releasing cell, the fact that specialized CNS centers 
release a specific combination of neurotransmitters implies that the 
neurons in these centers have distinct metabolic activities that relate 
to the function of the center. For example, in the raphe nuclei, the 
main source of serotonin in the brain, there is a high extracellular 
concentration of serotonin, the source of which is a non-synaptic 
release which is correlated with the activity level of the raphe nuclei61. 
We suggest that the release of serotonin was adopted, and still func-
tions as, a paracrine signal between cells in the raphe nuclei that 
facilitates, by a selection process, a local synchronization of activity.

Neurons within a specialized population of cells vary in their mor-
phology, their proximity to the sources of metabolites or to incom-
ing stimuli from outside the center, and may vary also with many 
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other parameters62. The specific neurons that are phenotypically 
more capable to carry out their function are those that react to and 
process the information received in the center, defining the output 
of the center. For instance, soma size determines electrophysiologi-
cal differences between neurons of retinal ganglions, larger neurons 
having greater excitability63.

It is reasonable to assume that these phenotypic differences that 
relate to metabolite capability also determine the level of neuro-
transmitter released by neurons in the ganglion: less active pheno-
types cannot counter the toxic effects of the serotonin released by 
the more active phenotypes, and consequently lower their metabo-
lism in order to reduce the concentration of serotonin around their 
outer membrane. Indeed, the release of serotonin in the raphe nuclei 
is reduced by an increase in its extracellular concentration61, which, 
we suggest, is a consequence of reduced activity in neurons that 
reduce their release. If serotonin was not toxic, the more active 
phenotypes, which produce and release higher concentrations of 
serotonin, would not reduce the synthesis of serotonin in less active 
phenotypes, and serotonin release could not serve as a mechanism 
of selection.

Furthermore we speculate that if the activity of a specific brain 
center entails the production of a particular waste product, this waste 
may serve at synapses as an optimal neurotransmitter to ensure that 
the information provided by the electrical stimulus originates in a 
specific center.

Phylogeny and neurotransmitters
Glutamate serves as the primary excitatory neurotransmitter at the 
insect neuromuscular junction64,65, whereas in mammals acetyl-
choline serves this role. The choice of neurotransmitter could be 
explained by the fundamental anatomical and physiological differ-
ence between mammals and insects: while insects receive oxygen 
directly to cells via trachea, and thus avoid contact between the 
extracellular medium and oxygen radicals, mammals receive oxygen 
through the extracellular medium. In other words, the insect neu-
romuscular junction is not exposed to oxygen to the same degree as 
the mammalian neuromuscular junction, therefore, glutamate is not 
exposed to oxidation and can be used as a neurotransmitter without 
having the same level of toxicity as in mammals. As a consequence 
of the ability to explain neurotransmitter choice based on anatomi-
cal and physiological differences, we did not place emphasis on the 
phylogenetic context to explain the usage of a particular neurotrans-
mitter for its function.

The blood-brain barrier
The blood-brain barrier of vertebrates separates the extracellular 
environment of neurons in the CNS from changes caused in periph-
eral tissues66. It has been suggested that the blood-brain barrier 
facilitates the maintenance of the highly regulated microenviron-
ment of the synapse by preventing neurotransmitters synthesized in 
the periphery from reaching synapses in the CNS, creating a “cross-
talk” between peripheral and neuronal signaling67. We suggest, in 
addition, that if neurotransmitters test and therefore represent the 
metabolic activity of neurons, then any influx of neurotransmitters 
from the periphery into the CNS could potentially interfere with 
that function. In other words, the extracellular concentration of neu-
rotransmitters can only reliably reflect the metabolism of neurons if 
it is isolated from neurotransmitters produced in the periphery. This 

may constitute an additional adaptive significance for the mecha-
nisms that prevent toxic neurotransmitters from diffusing through 
the blood-brain barrier.

Reduction of neurotransmitters in the aging brain
Aging is accompanied by changes in neurotransmitter concentrations 
in the brain, and in a number of regions there is a significant decrease 
in the concentration of glutamate, dopamine and serotonin68–71. It is 
possible to interpret the depletion of certain neurotransmitters in old 
age as an adaptive response to the reduced ability of aging cells to 
counter the toxicity of these neurotransmitters. Under such condi-
tions it is preferable to reduce the severity of the test rather than to 
forgo the test altogether. Indeed, dopamine synthesis is regulated by 
the redox state of the cell, and oxidative stress leads to an inhibition 
of tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of 
dopamine72,73. This might explain why restoring the toxicity through 
an increase in the concentration of certain neurotransmitters, in cells 
that cannot counter this toxicity, may cause long-term damage, as in 
the case of l-DOPA treatment for Parkinson’s disease74, while treat-
ment with anti-oxidants has the potential to restore neurotransmitter 
concentrations to normal levels75.

The evolution of chemical signaling in the brain
It has already been suggested by Le-Corronc et al.76 that the devel-
opmental role of neurotransmitters as paracrine signals precedes 
their role as facilitators of synaptic transmission. Our evolutionary 
perspective suggests that neurotransmitters that functioned in the 
periphery as paracrine signals, released directly from the cytoplasm, 
were initially adopted by the CNS to serve as paracrine signals 
within specialized CNS centers. The toxicity of the neurotransmit-
ters facilitated the selection of the optimal cells for the particular 
function of the CNS and coordinated the activity of cells within 
specific CNS centers. The use of these neurotransmitters at synaptic 
contacts was later adopted as a signature that identifies the origin 
of the electrical stimulus arriving at the post synaptic neuron, and 
prevents other electrical stimuli from interfering with the stimuli 
from the pre-synaptic neuron.

We hope that further studies of the function of a CNS center in rela-
tion to its particular metabolism involved in processing information 
may lead to a greater understanding of the relationship between the 
activity of neurons within the center, and the specific composition 
of the neurotransmitters they release.

An evolutionary model of the stages that selected 
toxic chemicals as signals
Our evolutionary perspective suggests that toxic waste released into 
the extracellular environment by the signaling cell, a release that 
is inherently correlated to the activity of the signaling cell, forces 
neighboring cells to react to counter the toxicity of the release. 
Their reaction may provide them with information that can contrib-
ute to the coordination of their activity with neighboring cells. Here 
we explain the model in the context of various examples that were 
instructive in its development.

Different metabolic activities result in the production of particu-
lar waste products. For example, oxidative phosphorylation in 
mitochondria leads inevitably to the production of reactive oxygen 
species77. Another example is the release of ACh, which is corre-
lated to calcium influxes78: as motor activities require the influx 
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of calcium ion into the cytoplasm79, and as ACh is also a positive 
ion, its release is an inevitable result of the influx of calcium ions78. 
While other positive ions may be released as a result of the influx of 
calcium, ACh is quickly hydrolyzed outside the cell80, as opposed 
to inorganic ions, and therefore reliably reflects in more detail than 
other ions the current activity of the releasing cell.

It is also reasonable to assume that the level of the waste released 
is correlated to the level of the activity of the releasing cell, such as 
the correlation between carbon dioxide production and the level of 
respiration81.

Among the waste products released, some are more toxic and poten-
tially harmful to nearby cells, since waste released within a mul-
ticellular organism encounters the outer cell membrane of nearby 
cells in addition to its potential harm to the signaling cell.

Cells exposed to a toxic chemical must counter the toxicity via (1) 
producing and releasing anti-oxidants, such as the release of ascor-
bate to reduce dopamine-mediated oxidative damage37, (2) degrad-
ing the chemical enzymatically, such as acetylcholinesterase80, or 
(3) transporting the chemical into the cytoplasm where it can be 
converted into less harmful chemicals or transported into and stored 
inside vesicles, as in the case of glutamate and dopamine5,24.

The uptake of glutamate or the release of antioxidants which 
counters the toxicity of dopamine is correlated to their respective 
concentrations outside the cell. The response to a toxic chemical 
must be related to its concentration if it is to counter its toxicity. 
In addition, the toxicity also harms the membrane of the releasing 
cell, limiting its metabolic activity in order to prevent the cell from 
increasing the level of release beyond its ability to cope with the 
toxicity, as evidenced by the inhibition of serotonin secretion and 
synthesis by extracellular serotonin61.

Consequently, the activity of a cell to counter the toxicity of chemi-
cals in its extracellular environment can provide it with information 
on its potential to be active as compared with that of the secreting 
cells. Such information can serve as a cue to facilitate the coordi-
nation of activities with those of the releasing cell, for instance, 
in the course of the development of osteoblasts that is mediated 
by glutamate82, to either differentiate, undergo mitosis or apoptosis. 
Coordination between neighboring cells is necessary within multi-
cellular organisms, and we suggest that the information provided by 
the reaction to released toxic waste can facilitate this coordination: 
for instance, in airway epithelium, which coordinates cilia beating 
via ACh 783, or in developing tissues such as developing osteoblasts, 
which coordinate development via glutamate signaling84.

Before the organism benefited from the reaction of neighboring 
cells to the release of the toxic chemical, mutations that resulted in 
increased synthesis of the released toxic chemical would have been 
detrimental. However, once neighboring cells became attentive to 
changes in the level of the released chemical, the organism could 
benefit from enzymes that increase the production of the toxic 
chemical in the releasing cell, which can provide more detailed and 
accurate information about a change in its metabolism, and facili-
tate the synchronization of activities between neighboring cells.

This extra investment in increasing the production of a toxic chemi-
cal (the handicap), changes the released chemical from a cue into a 
signal, and provides the basis for a paracrine signaling system16,85. 
We follow Maynard Smith and Harper18 in defining a signal as a 
trait that benefits the signaler only if the receiver reacts to it in a way 
that benefits the signaler.

It is interesting to note that the CNS uses ACh to stimulate periph-
eral cells, which is the same signal that is used in the periphery in 
paracrine signaling, rather than evolving a novel neurotransmitter, 
a process that would require the coevolution of receptors and com-
plementary transduction systems to process the information. It is 
possible that the release of ACh from myocytes86, which we suggest 
is an inevitable result of calcium influx, can serve as a paracrine 
signal and as a retrograde signal that provides reliable information 
regarding myocyte contraction to extrasynaptic ACh receptors on 
the motor neuron85. It is possible that other neurotransmitters also 
serve as retrograde signals. For example, glutamate serves as a ret-
rograde signal between cerebellar Purkinje neurons87.
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 Ulrich Technau
Department for Molecular Evolution and Development, University of Vienna, Vienna, Austria

The authors do not include a phylogenetic perspective of their evolutionary scenario by arguing that for
instance insects use glutamate for neuromuscular junctions, while mammals use acetylcholine. Of course
neurotransmitters can be co-opted to other types of neurons and contexts, but my point was different:
from the existing knowledge, it seems that nervous systems evolved only once (or twice, if the authors of
the Ctenophore genome are right) in animals and the conserved use of the various neurotransmitters is
part of that argument. If neurotransmitters evolved as  signals of their state by secreting toxic metabolic
waste products, this should also be the case in animals lacking a nervous system, such as placozoans
and sponges. I therefore expected a discussion of the potential role of these compounds in these animals.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 22 Dec 2014
, Tel Aviv University, IsraelKeith Harris

We take the evidence of neurotransmitter chemicals serving in signaling roles outside the central
nervous system in animals that have a central nervous system as paracrine signals, or in
unicellular organisms or plants, as evidence that the signaling role of these chemicals preceded
their role in central nervous systems. We have also argued this in a previous paper [85]. We cited
in the introduction the work of Csaba [15] in Tetrahymena which suggests that unicellular
organisms have hormonal systems which use the same chemicals that serve as hormones and
neurotransmitters in animals such as serotonin and insulin.

We would argue that the example of the specialization of neurotransmitters and hormones in
insects demonstrates how the physiological context of the signaling molecule selects the signaling
molecule rather than a phylogenetic constraint. 

 Corresponding authorCompeting Interests:
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 Rony Paz
Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel

It is an interesting perspective. I believe it would be hard to find conclusive evidence to support it, but I
think it provides an additional view on the matter.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Version 1
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doi:10.5256/f1000research.5153.r6188

 Rony Paz
Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel

This is an interesting speculative paper, suggesting a novel explanation for a long-standing question: why
are neurotrasmitters toxic? It applies a similar logic and rationale as in the original handicap-principle (and
the extended signal selection) to neurotransmitters and their use as signalling system between neurons.
As such, it suggests a nice explanation and the authors supply several examples that this approach can
help explain. Yet it also suffers from the lack of more conclusive evidence, as many other
evolutionary-driven explanations. I would ask the authors to suggest direct predictions that can be tested
in an experimental setup, and supply few examples of putative results that might argue against their idea.
If such predictions are provided, the paper will be strengthened and would constitute an important idea.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:
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, Tel Aviv University, IsraelKeith Harris

We have added in the new revision a suggestion of how our hypothesis might be tested fairly
simply, and what results would argue against our idea. 
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 Ulrich Technau
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This paper proposes a somewhat provocative but also inspiring hypothesis which claims that
neurotransmitters evolved from a similar principle as the sexual signals in birds: it tests the activity and the
status of the signaling cells by secreting a toxic substance. They provide an overview of the toxicity of
neurotransmitters when concentrations are slightly unbalanced.
 
They also propose that the blood-brain barrier evolved as part of the distinct signaling of neurons in the
CNS, without disturbance by signals produced in the periphery. The authors provide interesting thoughts
as to why and how the transmitter system could have evolved from the release of a toxic waste. This is all
fine, but what I miss is the evolutionary perspective promised in the title, which not only is based on a
"Gedankenexperiment" but on available evidence. All animals except sponges and placozoans have
neurons. Current evidence suggest that neurons from cnidarians and bilaterians have a common origin,
which is also reflected by the use of the same transmitters (although the Hydra genome shows that
several crucial genes of Ach production are missing). The recent analysis of the ctenophore genome led,
however, to the conclusion that neurons evolved independently in ctenophores and bilaterians. Sponges,
on the other hand, have many synaptic genes present in the genome, yet lack neurons. In summary,
interesting hypothesis, but I miss a discussion of all these available genomic data in the context of the
hypothesis.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:
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